An Anti-Malaria Drug Used In Cancer Treatment

After her brain cancer became resistant to chemotherapy and then to targeted treatments, 26-year-old Lisa Rosendahl’s doctors gave her only a few months to live. Now a paper published January 17 in the journal eLife describes a new drug combination that has stabilized Rosendahl’s disease and increased both the quantity and quality of her life: Adding the anti-malaria drug chloroquine to her treatment stopped an essential process that Rosendahl’s cancer cells had been using to resist therapy, re-sensitizing her cancer to the targeted treatment that had previously stopped working. Along with Rosendahl, two other brain cancer patients were treated with the combination and both showed similar, dramatic improvement.

“When I was 21 they found a large mass in my brain and I had it resected right away. They tested it for cancer and it came back positive,” Lisa says.

“Lisa is a young adult with a very strong will to live. But it was a high-risk, aggressive glioblastoma and by the time we started this work, she had already tried everything. For that population, survival rates are dismal. Miraculously, she had a response to this combination. Four weeks later, she could stand and had improved use of her arms, legs and hands,” says paper first author Jean Mulcahy-Levy, MD, investigator at the University of Colorado Cancer Center and pediatric oncologist at Children’s Hospital Colorado.

The science behind the innovative, off-label use of this malaria drug, chloroquine, was in large part built in the lab of Andrew Thorburn, PhD, deputy director of the CU Cancer Center, where Mulcahy-Levy worked as a postdoctoral fellow, starting in 2009. Thorburn’s lab studies a cellular process called autophagy. From the Greek “to eat oneself,” autophagy is a process of cellular recycling in which cell organelles called autophagosomes encapsulate extra or dangerous material and transport it to the cell’s lysosomes for disposal. In fact, the first description of autophagy earned the 2016 Nobel Prize in Medicine or Physiology for its discoverer, Yoshinori Ohsumi.

read more

Dr. Stegall’s Comments: The off-label use of medications has become a significant interest of mine. Scientific research has uncovered many pharmaceutical agents which were originally developed for other purposes, but have been shown to have anti-cancer activity as well. This article about chloroquine is intriguing, and the results in these glioblastoma patients are very encouraging. It is my hope that scientific research into cancer therapies will continue looking for novel ways to re-purpose existing medications.

Colon Cancer Research

Using the gene-editing system known as CRISPR, MIT researchers have shown in mice that they can generate colon tumors that very closely resemble human tumors.

Read More »